ad info

CNN.com
 MAIN PAGE
 WORLD
 ASIANOW
 U.S.
 U.S. LOCAL
 ALLPOLITICS
  TIME
  analysis
  community
 WEATHER
 BUSINESS
 SPORTS
 TECHNOLOGY
 NATURE
 ENTERTAINMENT
 BOOKS
 TRAVEL
 FOOD
 HEALTH
 STYLE
 IN-DEPTH

 custom news
 Headline News brief
 daily almanac
 CNN networks
 on-air transcripts
 news quiz

 CNN WEB SITES:
CNN Websites
 TIME INC. SITES:
 MORE SERVICES:
 video on demand
 video archive
 audio on demand
 news email services
 free email accounts
 desktop headlines
 pointcast
 pagenet

 DISCUSSION:
 message boards
 chat
 feedback

 SITE GUIDES:
 help
 contents
 search

 FASTER ACCESS:
 europe
 japan

 WEB SERVICES:
 TIME on politics Congressional Quarterly CNN/AllPolitics CNN/AllPolitics - Storypage, with TIME and Congressional Quarterly

PRC Missile and Space Forces

page 4

The Select Committee's classified Final Report contains additional information on PRC proliferation that the Clinton administration has determined cannot be made public.

The PRC's Military and Civil Space Program

The PRC's military and civilian space launch program began in the 1950s, concurrent with its development of long-range ballistic missiles. At that time, a small research effort was begun at the Chinese Academy of Sciences to develop indigenous space launch and satellite production capabilities.

The PRC's early efforts were aided by technology and knowledge transferred from the Soviet Union.

From that beginning, the PRC has developed a comprehensive space program that includes a family of rockets, numerous satellites, and a telemetry, tracking, and control network. These efforts have paid off, as the PRC is now a major space power. It offers international launch services and is working on placing men in space.

The PRC's first satellite launch occurred on April 24, 1970, using a CSS-3 intercontinental ballistic missile. The ICBM was modified by adding a third stage, which was used to place the satellite into orbit. This new rocket was named the Long March 1.

The 380-pound satellite it carried was named Dong Fang Hong-1 (East Is Red 1). The satellite orbited for approximately 26 days, transmitting to Earth the song "The East is Red." 45

After the PRC's second successful launch of a satellite on March 3, 1971, again using the modified CSS-3 ICBM, the PRC set out to launch heavier payloads into orbit. For this purpose, the PRC turned to the longer-range, more powerful CSS-4 ICBM. This rocket was named the Long March 2.

The first three launches of the Long March 2 rocket, from 1973 through 1974, were failures. Finally, on July 26, 1975, the PRC successfully launched the Long March 2C and placed its third satellite into orbit.

During the balance of the 1970s, the PRC launched nearly a dozen satellites on the Long March 2, many of which undoubtedly were for military purposes. Nearly half of these launches were unsuccessful, however, resulting in the destruction of many payloads.

The Long March 2 and its derivatives are the main rockets used by the PRC today, in both its military and civilian space programs. Because the Long March 2 was derived directly from the CSS-4 intercontinental ballistic missile, the two share much in common. The Long March 2 rocket and the CSS-4 ICBM use the same airframe structure, the same cluster of four YF-20 engines (known as the YF-21) in the first stage, and the same single YF-22 engine combined with the YF-23 vernier engines that form the YF-24 in the second stage.46 However, unlike the CSS-4, the Long March 2 was modified to deliver payloads to orbit rather than a nuclear weapon to a target.

In order to meet space launch requirements for heavier payloads and higher orbits, the PRC improved the performance of the Long March rocket. Among other changes, the PRC increased the amount of propellant the rocket could carry, improved the performance of the first and second stage engines, added new cryogenic liquid-propellant third stage engines, and attached additional boosters that were strapped on to the basic rocket. These changes led to the development of three new modifications to the Long March rocket.

The Long March 3 was developed in 1977 to meet the requirements for launching communications satellites into geosynchronous orbit. It was the PRC's first rocket built for this purpose.47 The Long March 3 uses the same first and second stages as the Long March 2C, except that aerodynamic fins are added to the base of the first stage.48 It also uses the same YF-21 and YF-24 engines.49 The main change from the Long March 2C is the addition of a restartable, cryogenic liquid-propellant third stage.50 This stage is designed to boost the payload into a geostationary transfer orbit.

The Long March 4 was developed by the PRC in the late 1970s to launch meteorological satellites for military and civilian purposes into sun synchronous orbits. The new rocket used improved first and second stage engines, and a first stage that was 13 feet longer than the standard Long March 2 first stage.51

When the PRC announced in 1986 that is was entering the commercial satellite launch market, it decided to develop a rocket that could provide heavy-lift capabilities to low earth orbit. However, the majority of commercial payloads at the time were for geosynchronous satellites.52 Moreover, the PRC's operational rockets at the time were limited in their performance compared to Western rockets.

The Long March 2C could only place a 1,350-pound payload into low earth orbit. The Long March 3 was only capable of placing an 870-pound payload into geostationary transfer orbit.53 In comparison, the U.S. Delta 3925 rocket could place 2,140 pounds into low earth orbit, and 795 pounds into geosynchronous orbit. The U.S. space shuttle could transport 15,400 pounds into low earth orbit.54 To place heavy payloads into geosynchronous orbit requires either a third stage or a perigee kick motor, which the Long March still lacked.

To meet this requirement, the PRC developed the Long March 2E rocket which was first launched successfully in 1992. The Long March 2E uses a stretched version of the Long March 2C first and second stages, increasing the amount of propellant carried, which increases the burn-time of the engines. 55 The Long March 2E also uses improved versions of the YF-20 engines used on the Long March 2C. Known as the YF-20B, these engines offer improved thrust.56 The Long March 2E also uses four strap-on liquid-propellant boosters. These boosters are attached to the rocket's first stage. Each booster is fitted with a YF-20B engine.

To permit the Long March 2E to place a satellite into geosynchronous orbit, the PRC mated the satellite payload with a perigee kick motor, which acted as a third stage. Because there was no indigenous PRC kick motor, however, foreign launch customers had to use Western-manufactured kick motors. This required a separate export license. The PRC later developed its own family of kick motors, allowing customers to choose between Western- or PRC-manufactured versions.

Finally, the Long March 2E employs an enlarged "hammerhead" fairing to protect the satellite payloads, which exceed the upper stage's diameter. The Long March 2E can place 5,450 pounds into low earth orbit and 2,140 pounds into geosynchronous transfer orbit.57

The Long March 2E has suffered a series of in-flight failures (see table below). The December 1992 and January 1995 failures resulted in the destruction of two Hughes-manufactured satellites. The results of the failure analyses conducted by Hughes as a result of these launch failures are discussed in the chapter entitled Satellite Launches in the PRC: Hughes.

 

Launch History of the PRC's Long March 2E58

Launch Date

Satellite

Manufacturer

Owner

Results

Jul. 16, 1990

Dummy AUSSAT Satellite and Badr-1

PRC

Dummy AUSSAT Satellite ñ PRC Badr-1 ñ Pakistan

Perigee kick motor failed in the Dummy AUSSAT Satellite

Badr-1 achieved orbit

Aug. 31, 1992

Optus-B1

Hughes

Optus (Australia)

Success

Dec. 21, 1992

Optus-B2

Hughes

Optus (Australia)

Failure - fairing collapse

Aug. 24, 1994

Optus-B3

Hughes

Optus (Australia)

Success

Jan. 25, 1995

Apstar-2

Hughes

Asia-Pacific Telecom(APT)

Failure- fairing collapse

Nov. 28, 1995

Asiasat-2

Lockheed-Martin

Asiasat (Hong Kong)

Success

Dec. 28, 1995

Echostar-1

Lockheed-Martin

Echostar Inc. (U.S.)

Success

Back  |  Forward


COX REPORT

Overview
pages 1 | 2 | 3 | 4

PRC Acquisition of U.S. Technology
pages 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

PRC Theft of U.S. Nuclear Warhead Design Information
pages 1 | 2 | 3 | 4 | 5

High Performance Computers
pages 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10

PRC Missile and Space Forces
pages 1 | 2 | 3 | 4 5 | 6 | 7 | 8 | 9

Satellite Launches in the PRC: Hughes
pages 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Satellite Launches in the PRC: Loral
pages 1 | 2 | 3 | 4 | 5 | 6

Launch Site Security in the PRC
pages 1 | 2 | 3 | 4 5 | 6

Commercial Space Insurance
pages 1 | 2 | 3 | 4

U.S. Export Policy Toward the PRC
pages 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Manufacturing Processes
pages 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10

Recommendations
pages 1 | 2 | 3

Appendices
pages introduction | A | B | C | D | E | F



Search CNN/AllPolitics
          Enter keyword(s)       go    help





© 1999 Cable News Network, Inc. All Rights Reserved.
Terms under which this service is provided to you.
Read our privacy guidelines.
Who we are.