CNN  — 

The Japan Aerospace Exploration Agency’s Hayabusa2 spacecraft fired a copper cannonball a little bigger than a tennis ball into a near-Earth asteroid named Ryugu to learn about its composition.

Almost a year later, scientists have had a chance to analyze the data, captured by cameras on the spacecraft, to learn more about this asteroid some 195 million miles away.

The Hayabusa2 probe deployed Small Carry-on Impactor – a device packed with plastic explosives – intended to blast an artificial crater in the asteroid.

After deploying the SCI from the asteroid’s orbit, Hayabusa2 moved to a safe distance from the blast site, according to the agency.

It also released a small camera called DCAM3 to capture the detonation as it occurred. The camera floated about a half mile away.

The researchers now know that the impact created a nearly 33-foot-wide crater on the surface of the asteroid, according to a new study. It sent up a plume of material upon impact, which the camera was able to capture in detail.

The study published in the journal Science on Thursday. An additional study about the asteroid’s composition published Monday in the journal Nature.

This still from a video created by images captured by Hayabusa 2 shows material being ejected and falling back onto the asteroid after impact.

The crater left behind is like a semicircle, including an elevated rim, a central pit and an asymmetrical pattern of ejected material, according to the researchers. They believe the asymmetric pattern could be due to a larger boulder beneath the crater.

Based on the material released by the impact, the researchers also believe that Ryugu includes material similar to loose sand on Earth.

The ejecta curtain, or plume of material created by the impact, never fully detached from the surface, according to the study. The researchers think that this was due to the asteroid’s gravity.

Ryugu is a dark, spinning top-shaped asteroid that measures about 3,000 feet wide. The surface is covered in boulders. It’s also incredibly dry.

Photos captured by the spacecraft have revealed an even distribution of dark and rough rocks, as well as those that are bright and smooth. Scientists believe there are two kinds of material on the asteroid because it likely formed from the leftover rubble after its parent body was hit.