When NASA’s Mars 2020 rover lands on the Red Planet in February 2021, it will touch down in Jezero Crater, the site of a lake that existed 3.5 billion years ago. The next generation rover will build on the goals of previous robotic explorers by collecting the first samples of Mars, which would be returned to Earth at a later date.
“On the science side, we’re really thinking about new discoveries we can make on the surface and how [that] will inform what we learn when we get the samples back,” said Katie Stack Morgan, deputy project scientist for the rover at NASA’s Jet Propulsion Laboratory in Pasadena, California. “Our job is to find the best samples, collect and store them, and place them on the surface.”
But the new rover will also be on a mission to lay the groundwork for future human exploration.

“We’re very much thinking about how Mars could be inhabited, how humans could come to Mars and make use of the resources that we have there in the Martian environment today,” said Morgan. “We send our robotic scouts first to learn about these other places, hopefully for us to prepare the way for us to go ourselves.”
The Mars 2020 rover, which looks very similar to the Curiosity rover that landed in 2012, is so complex it requires a team of 300 scientists for its operations. They analyze the data returned by the rover, monitor its functions and oversee the suite of instruments on board. If all goes according to plan, one day these tasks may fall to a single human whose footprints would land next to rover tracks on the Martian surface.
The 2020 rover’s work will begin in areas of Jezero Crater, where it will search for signs of ancient life, including mineral deposits and perhaps even microscopic fossils. If 2020 samples these sites, the intriguing soil will be stored in metal tubes, and the data it collects may be able to help scientists know if they’ve found a biosignature on Mars.
“Combining an understanding of the composition of the rocks, but also the very fine detail that we see in the rocks and the textures, can make a powerful case for ancient signs of life,” Morgan said. “We know that ancient Mars was habitable. But we haven’t yet been able to show that we have signs, real signs, of ancient life yet. And with our instrument suite, we think we can make real advances towards that on the surface.”
Previously, rovers Spirit and Opportunity searched for evidence of water on Mars, and the Curiosity rover has focused on understanding past habitability on the planet and the conditions for life. The 2020 rover differs from Curiosity because it will acquire core samples of rock and store them in a pristine way, whereas Curiosity drills into rocks and analyzes their dust.
Meet the Mars 2020 rover
Returning the samples is a challenge down the road that NASA is already planning. The earliest a mission could go back to Mars to retrieve the samples has been set in the 2026-2027 time frame, Morgan said.
“This is a huge endeavor for the human species, and it’ll take cooperation from more than just our own space program,” Morgan said. “Once the resources are there, we can develop the technology. It’s getting the buy-in from international partners and from our own space administration and government to really make this happen.”

In the meantime, 2020’s suite of instruments will forge ahead and investigate what Mars could be like for the first humans to land on the surface as it searches for microbial life in the past.
Here’s how four of its instruments will investigate on behalf of future human explorers.
1. Terrain Relative Navigation
No matter the mission, sticking the landing is key for future success. The 2020 rover will land on Mars using the new Terrain Relative Navigation system, which allows the lander to avoid any large hazards in the landing zone.
“In past