ad info

CNN.com
 MAIN PAGE
 WORLD
 ASIANOW
 U.S.
 LOCAL
 POLITICS
 WEATHER
 BUSINESS
 SPORTS
 TECHNOLOGY
 NATURE
 ENTERTAINMENT
 BOOKS
 TRAVEL
 FOOD
 HEALTH
 STYLE
 IN-DEPTH

 custom news
 Headline News brief
 daily almanac
 CNN networks
 CNN programs
 on-air transcripts
 news quiz

  CNN WEB SITES:
CNN Websites
 TIME INC. SITES:
 MORE SERVICES:
 video on demand
 video archive
 audio on demand
 news email services
 free email accounts
 desktop headlines
 pointcast
 pagenet

 DISCUSSION:
 message boards
 chat
 feedback

 SITE GUIDES:
 help
 contents
 search

 FASTER ACCESS:
 europe
 japan

 WEB SERVICES:
 
NATURE

Warm Arctic may enhance global warming

The researchers measured carbon dioxide emissions from moist and dry tundra surrounding Toolik Lake, Alaska   

March 1, 1999
Web posted at:10:45 AM EST




An increase in temperatures as a result of global warming may lead to significantly higher levels of carbon dioxide being released into the atmosphere. This, in turn, could fuel global warming even more, according to research conducted last summer in the Arctic.

The study found that artificially elevating summer temperatures by about 3.6 degrees Fahrenheit (2 degrees Celsius) on plots of Arctic tundra increased the CO2 emissions 26 to 38 percent under normal snowfall. When snowfall on some plots was increased -- which is one possibility under global warming -- CO2 emissions increased 112 to 326 percent.

"We found significant losses of carbon dioxide from the soil of the tundra," said Michael Jones, a post-doctoral researcher in evolution, ecology and organismal biology at Ohio State University. "Anticipated global warming may increase this carbon loss."

The Arctic, which covers about one-fifth of the globe, contains nearly one-third of the Earth's stored soil carbon. Researchers have found that Arctic carbon loss from respiration of CO2 by plants and soil microorganisms far surpasses the amount taken in by plants each growing season. Carbon dioxide is a major player in global warming.

"The Arctic has the most rapidly changing climate of any region on Earth," said Jones. He and his colleagues measured CO2 emissions from moist and dry tundra surrounding Toolik Lake, Alaska. Researchers believe carbon dioxide loss may be different in moist and dry tundra areas. They manipulated winter precipitation in each area by setting up a large snow fence on each tundra type. These fences provided increased snow accumulation and also helped simulate potential changes in environment and climate.

"We know there will be more snow accumulation with increasing winter temperatures," said Jones. "If the snow takes longer to melt, that shortens the growing season, and that may influence how much carbon dioxide is released."

The study found that the deep snow sites took about four weeks longer to completely melt than the normal-snow sites.

The researchers also increased summer temperatures in both tundra sites. They used small open-top fiberglass chambers -- much like mini greenhouses -- to warm the air. They used a temperature recording device to take air and soil temperatures in three warmed and three unwarmed plots every 48 minutes from the end of May to mid-August.

Both air and soil temperatures in the open-top chambers were about 3.6F (2C) higher than the temperatures in the un-manipulated sites.

Carbon dioxide concentrations were measured in all plots using an infrared gas analyzer attached to a Plexiglas box. Measurements were taken every four hours for a 24-hour period once a week from early June to late August.

The results showed that moist tundra emitted more carbon dioxide than dry tundra, although losses at both types of sites were significant. The researchers found that in both tundra types, seasonal CO2 loss was higher in the experimentally warmed plots, regardless of the amount of snowfall the previous winter.

Under experimental warming, carbon dioxide emissions were greater from deep-snow plots than those with normal snowfall. However, under normal temperatures, CO2 emissions were lower in deep-snow plots compared to plots with normal snowfall.

"Our results show there is already carbon dioxide loss under current climate conditions, and we expect this will only increase under global warming," said Jones.

The study appears in a recent issue of the journal Arctic and Alpine Research.

Copyright 1999, Environmental News Network, All Rights Reserved


RELATED ENN STORIES:
Permafrost studied for global warming clues
Scientists rule out one threat of Antarctic collapse
20th century global warming is unprecedented
Arctic warming threatens polar bears, U.N. told
It's warming, Alaska natives testify

RELATED SITES:
Arctic and Alpine Research
International Tundra Experiment
Ohio State University Department of Evolution, Ecology, and Organismal Biology
Note: Pages will open in a new browser window
External sites are not endorsed by CNN Interactive.

 LATEST HEADLINES:
SEARCH CNN.com
Enter keyword(s)   go    help

Back to the top   © 2001 Cable News Network. All Rights Reserved.
Terms under which this service is provided to you.
Read our privacy guidelines.