Spider lessons: How to mend your body with silk

Can spider silk help you self-heal?

    Just Watched

    Can spider silk help you self-heal?

Can spider silk help you self-heal? 03:54

Story highlights

  • Is this knee implant really made from spider's silk?
  • Dr Nick Skaer has created FibroFix implant that allows cells to "grow into" it
  • It could help thousands of people to avoid knee replacement surgery
  • Eventually, the material could help repairall varieties of human tissue -- including nerves

If you ever try your hand at farming spiders, you'll very soon discover it's no easy task.

Penning in a bunch of golden orb weavers -- the queens of the web-spinning world -- will earn you only a few milligrams of ultra-tough spider's silk.

That's if they don't eat each other first, explains Dr. Nick Skaer. And they will.

Bug catcher

As a boy, Dr Skaer loved hunting for creepy crawlies -- but was never a fan of spiders.

Today, Skaer's day-job involves persuading people to implant the creatures' silky secretions under their skin -- with the promise that the fiber will weave together damaged tissue.

Dr Nick Skaer

It's a "quantum leap," admits Dr Skaer, but his creation could one day relieve agony for millions.

Watch the video above to see how the Dr Skaer created the FibroFix implant.

Thread of life

Skaer, now the CEO of biomaterials producers Orthox explains that silk produced by spiders is not just naturally tough -- 25 times the strength of steel -- it is also "biocompatible."

The close similarity between molecules in the spider silk and proteins in the human body means human cells can grow into the fiber.

When implanted in the human body, a device made from spiders silk would encourage the surrounding cells to "repopulate the device with actual human living tissue," Skaer says.

"If you've got a very strong, resilient material which also has a lot of similarities to tissues in the human body, it's a great place to start for trying to make a medical implant."

Watch: 'The night I invented 3D printing'

Saved by the silkworm

A silkworm

Instead of fighting the spider's cannibal instinct, and meager rate of production, Skaer's team set about creating fake spider's silk -- made from the same fibers that go into high class scarves.

The team took silkworms, which produce 1000 times as much silk as a spider, and broke it down to the basic molecules.

Re-spinning this so that all the proteins are closely aligned -- just how a spider does -- creates a far stronger fiber than the silkworm can.

Or -- when Skaer presents their finished product -- a rubber-looking crescent-shaped implant.

Friends in knees

The FibroFix implant is soon destined for knee joints, where Skaer believes it can help people with damaged cartilage to regrow the shock-absorbing tissue.

Without this implant, millions of people have no option but to resort to total knee replacement surgery.

As of 2010, over 600,000 total knee replacements are performed annually in the United States alone, and estimates suggest that this figure will increase 6-fold by 2030.

This marks a $13 billion-per-year cost for Americans, which is set to rise as the ageing Baby Boomer generation battle age-related conditions such as osteoarthritis, but demand to stay active.

The first round of trialists are set to start receiving FibroFix implants this year, and Skaer hopes they will pave the way for others to avoid knee replacement:

"If the clinical trials go well, we hope to have this available for patients within the next two to three years."

Read: The coolest things technology has up its sleeve in 2014

Meet the genius behind 3-D printing

    Just Watched

    Meet the genius behind 3-D printing

Meet the genius behind 3-D printing 04:09
Is this the ultimate space suit for Mars?

    Just Watched

    Is this the ultimate space suit for Mars?

Is this the ultimate space suit for Mars? 03:58
3D projector creates life-like holograms

    Just Watched

    3D projector creates life-like holograms

3D projector creates life-like holograms 03:54

Beyond the knee

Skaer sees future applications in other joints -- "the hip, the shoulder, ankle, all of these suffer osteoarthritis" -- as well as in the cartilage discs between the bones in the spine.

It doesn't stop there, either:

"If you've got a technology that integrates very well with the body -- which allows cells to grow down into it -- then bones and joints certainly aren't the only tissues in the body that you could look to address."

In the long term, Skaer imagines silk platforms being used to patch up intestines, hernias, and muscles -- including in the heart.

There's even the suggestion that -- one day -- it could fix a severed spine:

"Is there the potential for nerve repair? Well, the chaps [research scientists] at Oxford University have certainly started looking at nerve repair as an interesting further application of this technology. And they've got some promising early results certainly."

"That obviously is far, far earlier than the stage that we're at..."

Watch: The technology bringing Sinatra, Tupac back to life

Spider thread revisited

For now, relieving the agony of knee pain is motivation enough.

And all this has given him a new perspective on the crawling spider:

"Spiders I suppose are very different from when I was turning over rocks and looking underneath them and when I was a kid.

"I don't so much see the eight legs crawling around and the sharp pair of fangs -- I see something that can spin me a remarkable material, and that's very exciting, as a scientist."

      Make Create Innovate

    • Designed by UK-based engineers Reaction Engines Ltd, the Skylon project is a radical idea for future space travel.

      Engineer Alan Bond has been developing a new concept for space travel for over 30 years -- and his creation is now on the verge of lift off.
    • Crumbling buildings, burnt-out PCs, and cracked screens -- a new generation of "self-healing" technologies could soon consign them to history.
    • Alpha Sphere

      Singing Tesla coils, musical ice cream, vegetables on drums... and this ball? Find out how "hackers" have created a new generation of instruments.
    • Forget wearable tech, embeddable implants are here. Learn more about the pioneers who are implanting devices into their bodies.
    • A visitor of the 'NEXT Berlin' technology conference tries out Google Glass, a wearable computer that responds to voice commands and displays information before your eyes. It is expected to go to market in late 2013.

      We know how wearable tech can enhance our fitness lives but there's evidence that its most significant application is yet to come: the workplace.
    • iRobot's newest Roomba 880 vacuum cleaning robot

      iRobot, creators of vacuuming robot Roomba reveal how they learned from secret experiments -- in space travel, minefields, and toys.