Skip to main content

Stem cell breakthrough may be simple, fast, cheap

By Elizabeth Landau, CNN
updated 8:20 AM EST, Thu January 30, 2014
Researchers said in January they had developed a new method of making stem cells. Mouse cells were "stressed" in several ways, such as by being placed in an acidic environment. Researchers were then able to use those cells to generate various tissues in developing mice. This image shows a mouse fetus that has tissues that grew, in part, from the stem cells. However, other researchers have been unable to replicate the findings. Click through the gallery to learn more about stem cell research. Researchers said in January they had developed a new method of making stem cells. Mouse cells were "stressed" in several ways, such as by being placed in an acidic environment. Researchers were then able to use those cells to generate various tissues in developing mice. This image shows a mouse fetus that has tissues that grew, in part, from the stem cells. However, other researchers have been unable to replicate the findings. Click through the gallery to learn more about stem cell research.
HIDE CAPTION
History of stem cells
History of stem cells
History of stem cells
History of stem cells
History of stem cells
History of stem cells
History of stem cells
History of stem cells
History of stem cells
History of stem cells
History of stem cells
History of stem cells
History of stem cells
History of stem cells
History of stem cells
<<
<
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
>
>>
STORY HIGHLIGHTS
  • The stem cells were created from cells of young mice
  • Researchers put these blood cells in an acidic environment
  • Stem cell therapies may one day be used to treat diseases
  • This new technique has not been tried in humans

(CNN) -- We run too hard, we fall down, we're sick -- all of this puts stress on the cells in our bodies. But in what's being called a breakthrough in regenerative medicine, researchers have found a way to make stem cells by purposely putting mature cells under stress.

Two new studies published Wednesday in the journal Nature describe a method of taking mature cells from mice and turning them into embryonic-like stem cells, which can be coaxed into becoming any other kind of cell possible. One method effectively boils down to this: Put the cells in an acidic environment.

"I think the process we've described mimics Mother Nature," said Dr. Charles Vacanti, director of the laboratory for Tissue Engineering and Regenerative Medicine at Brigham & Women's Hospital in Boston and senior author on one of the studies. "It's a natural process that cells normally respond to."

Both studies represent a new step in the thriving science of stem cell research, which seeks to develop therapies to repair bodily damage and cure disease by being able to insert cells that can grow into whatever tissues or organs are needed. If you take an organ that's functioning at 10% of normal and bring it up to 25% functionality, that could greatly reduce the likelihood of fatality in that particular disease, Vacanti said.

This method by Vacanti and his colleagues "is truly the simplest, cheapest, fastest method ever achieved for reprogramming [cells]," said Jeff Karp, associate professor of medicine at the Brigham & Women's Hospital and principal faculty member at the Harvard Stem Cell Institute. He was not involved in the study.

Scientists grow minibrains from stem cells

Before the technique described in Nature, the leading candidates for creating stem cells artificially were those derived from embryos and stem cells from adult cells that require the insertion of DNA to become reprogrammable.

Stem cells are created the natural way every time an egg that is fertilized begins to divide. During the first four to five days of cell division, so-called pluripotent stem cells develop. They have the ability to turn into any cell in the body. Removing stem cells from the embryo destroys it, which is why this type of research is controversial.

Researchers have also developed a method of producing embryonic-like stem cells by taking a skin cell from a patient, for example, and adding a few bits of foreign DNA to reprogram the skin cell to become like an embryo and produce pluripotent cells, too. However, these cells are usually used for research because researchers do not want to give patients cells with extra DNA.

The new method does not involve the destruction of embryos or inserting new genetic material into cells, Vacanti said. It also avoids the problem of rejection: The body may reject stem cells that came from other people, but this method uses an individual's own mature cells.

"It was really surprising to see that such a remarkable transformation could be triggered simply by stimuli from outside of the cell," said Haruko Obokata of the Riken Center for Developmental Biology in Japan in a news conference this week.

The process is called STAP, which stands for "stimulus-triggered acquisition of pluripotency." Karp estimates that the method is five to 10 times faster than other means of reprogramming cells.

Have a taste of the world's first stem cell burger

Researchers used mice to study the STAP cell phenomenon. They genetically altered the mice donating stem cells to "label" those cells with the color green. For instance, they modified mice such that their cells would light up green in response to a particular wavelength of light.

The scientists exposed blood cells from these genetically altered mice to an acidic environment. A few days later, they saw that these cells turned into the embryonic-like state and grew in spherical clusters.

Scientists put the cell clusters into a mouse embryo that had not been genetically modified. It turned out, the implanted clusters could form tissues in all of the organs that the researchers tested. The scientists knew that the cells came from the original mouse because they turned green when exposed to a particular light.

Besides modifying acidity, researchers also stressed the cells in other ways, such as lowering the oxygen environment and disrupting the cell membrane. Increasing acidity was one of the most effective methods of turning mouse blood cells into STAP cells.

There are, of course, some caveats.

For now, the STAP cell procedure has only been demonstrated in cells from young mice. The effectiveness in humans, and the risks, are unknown.

Researchers have not yet shown how STAP embryonic-like stem cells compare with bona fide embryonic stem cells or induced pluripotent stem cells, Karp said.

Tell us your story
We love to hear from our audience. Follow @CNNHealth on Twitter and Facebook for the latest health news and let us know what we're missing.

Also, although the study was "rigorous" and "well-controlled," it did not demonstrate exactly why the stress on the cells caused them to become STAP cells, Karp said.

As with everything in science, more research is required to confirm the findings and learn more about the implications.

Vacanti hopes the process could get tested clinically in humans within three years. He noted that induced pluripotent stem cells are already being explored in Japan in humans and the same "platforms" could be utilized for STAP cells.

STAP cells also have an additional property that embryonic stem cells and induced pluripotent stem cells do not: They can become placental cells. Scientists can manipulate them to contribute to tissues of either the embryo or the placenta.

What therapeutic purpose growing more placenta could serve, Vacanti isn't sure -- unless, that is, you wanted to create an embryo and bring it to term.

Cloning stem cells: What does it mean?

But that's not the goal of this research. Vacanti and colleagues want to explore possible ties to cancer from the STAP cell process; it could potentially help to model the process by which cells become cancerous and explore if there is a way to reverse the process.

Stem cell research as a field has been growing at "lightning speed," Karp said.

New reprogramming approaches to stem cells are emerging all the time, he said, and this one in particular "looks incredibly promising."

Follow Elizabeth Landau on Twitter at @lizlandau

ADVERTISEMENT
Part of complete coverage on
Science news
updated 10:12 AM EDT, Thu March 20, 2014
For a Tyrannosaurus rex looking for a snack, nothing might have tasted quite like the "chicken from hell."
updated 6:29 PM EDT, Fri March 14, 2014
Everyone is familiar with Tyrannosaurus rex, but humanity is only now meeting its much smaller Arctic cousin.
updated 12:12 PM EST, Thu March 6, 2014
At about 33 feet long, weighing 4 to 5 tons and baring large blade-shaped teeth, the dinosaur Torvosaurus gurneyi was a formidable creature.
updated 6:43 AM EST, Fri February 21, 2014
This Pachyrhinosaurus can go to the head of its class.
updated 8:04 AM EDT, Thu March 27, 2014
Science is still trying to work out how exactly we reason through moral problems, and how we judge others on the morality of their actions. But patterns are emerging.
updated 7:06 PM EST, Thu February 27, 2014
A promising way to stop a deadly disease, or an uncomfortable step toward what one leading ethicist called eugenics?
updated 8:07 PM EST, Fri February 14, 2014
Seattle paleontologists safely removed the largest fossilized mammoth tusk discovered in the region from a construction site.
updated 4:37 PM EST, Fri February 14, 2014
For the first time, scientists have created human lungs in a lab -- an exciting step forward in regenerative medicine.
updated 6:13 AM EDT, Tue April 23, 2013
A mysterious, circular structure, with a diameter greater than the length of a Boeing 747 jet, has been discovered submerged about 30 feet underneath the Sea of Galilee in Israel.
updated 7:55 AM EST, Wed February 12, 2014
Tiny rocket-shaped metal particles might one day take a wild ride inside your body.
updated 3:11 PM EST, Thu February 6, 2014
Ten years ago on New Year's Eve, Dennis Aabo Sorensen was launching fireworks when a defective rocket blew up. He was rushed to the hospital, and his left hand was amputated.
updated 5:25 PM EST, Fri January 17, 2014
Every corner of the planet offers some sort of natural peculiarity with an explanation that makes us wish we'd studied harder in junior high Earth science class.
updated 12:43 PM EST, Thu January 9, 2014
There is a light show in the ocean that you can't see, but many fish can. There's quite a display of neon greens, reds, and oranges going on underneath the surface.
updated 7:53 PM EST, Sat December 14, 2013
One trillionth of a second after the Big Bang is the timeframe that physicist Joe Incandela knows well.
updated 11:57 AM EST, Tue November 26, 2013
Scientists have uncovered archaeological evidence of when Buddha's monumentally influential life occurred.
updated 8:20 AM EST, Thu November 14, 2013
Deep in a remote, hot, dry patch of northwestern Australia lies one of the earliest detectable signs of life on the planet, tracing back nearly 3.5 billion years, scientists say.
updated 8:15 AM EST, Sun November 3, 2013
Four top environmental scientists raised the stakes Sunday in their fight to reverse climate change and save the planet.
updated 5:52 PM EDT, Fri October 18, 2013
A new study suggests that a group of marine species with claw-like structures emerging from their heads were related to spiders and scorpions.
updated 12:04 PM EDT, Sat October 19, 2013
The most complete early human skull has been found in the European country Georgia.
updated 3:10 PM EDT, Wed September 4, 2013
We leave genetic traces of ourselves wherever we go -- in a strand of hair left on the subway or in saliva on the side of a glass at a cafe.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT