Skip to main content
CNN.com
Search
Home World U.S. Weather Business Sports Analysis Politics Law Tech Science Health Entertainment Offbeat Travel Education Specials Autos I-Reports
Science and Space News

CubeSat losses spur new development

By Leonard David
SPACE.comexternal link
Adjust font size:
Decrease fontDecrease font
Enlarge fontEnlarge font

LOGAN, Utah (SPACE.com) -- It was a dark day for CubeSat builders. The seventh launch of the Dnepr launch vehicle hauling over a dozen spacecraft blasted upward into the night from its silo site at the Baikonur Cosmodrome, Kazakhstan.

But some 73 seconds after launch, the converted Cold War SS-18 missile ran into trouble. The booster and its cargo of satellites crashed down range, plowing into an unpopulated desert area.

The accident meant the loss of 18 satellites, including the first spacecraft of Belarus -- a remote sensing craft called BelKA -- along with a Russian Baumanets satellite developed by the students of Bauman State Technical University. Also onboard, several smaller satellites: UniSat-4 and PiCPoT from Italy, and five "P-Pod" containers collectively loaded with 14 CubeSat satellites from 10 different universities around the globe and the U.S.-based The Aerospace Corporation, a private company.

It was billed as the largest deployment into Earth orbit of CubeSats ever -- a milestone that was not to be.

There was a sense of shared loss and requisite group therapy -- as well as passion to move forward -- within the CubeSat community that gathered at the 20th annual conference on small satellites, held here at Utah State University earlier this month.

In an update on the Dnepr failure from ISC Kosmotras, the Russian and Ukrainian rocket-for-hire group, a malfunctioning hydraulic drive unit of a combustion chamber on the booster's first stage has been branded as the root cause of the July 26 crash.

Watching the launch a few miles away at Baikonur was Dave Klumpar, research professor of physics at Montana State University and head of the school's Space Science and Engineering Laboratory. The Dnepr carried the school's first-ever satellite, the Montana EaRth Orbiting Pico Explorer, or MEROPE for short. It was a proud product of some 5 years of work.

"We watched the rocket arc overhead...then there was a bit of a flash and darkness...followed by a couple of dimmer flashes. That was our first clue that there might be something wrong," Klumpar recalled. "At first there was a lot of uncertainty, followed by total letdown."

"We were really looking for a success...to show we built a successful satellite and it operated in the space environment," Klumpar said. "And that was stolen from us. We can't make that claim."

While CubeSats may be petite in size, they pack an educational punch.

CubeSats measure about four inches?just 10 centimeters?in size and weigh a mere 2.2 pounds (one kilogram). Their standardized shape makes them cheaper to produce in a much shorter period of time, with students able to design, build, test, launch and operate the satellites while still in school.

The CubeSat Project is an international collaboration of over 80 universities, high schools and private firms busily building the diminutive devices. The tiny, hold-in-the-palm-of-your-hand satellite is built to specifications developed by California Polytechnic State University in San Luis Obispo, California and Stanford University's Space Systems Development Laboratory.

Through companies like Kosmotras, CubeSat launch costs currently translate to about $40,000 per single cube for the developer.

CubeSats can perform many tasks. Several duties of the recently destroyed satellites, for example, were to flight qualify a wide variety of small sensors and attitude control devices; take images of Earth; collect data on the electrical strength of clouds in the ionosphere; as well as chart the Van Allen radiation belts and test hardware and ideas not yet flown before in space.

"The Dnepr failure was really hard for a while," said Cal Poly's Jordi Puig-Suari, CubeSat Project Co-Director and chair of the university's Aerospace Engineering Department. "I probably didn't realize how hard it hit us. For two weeks we didn't get too much done. Everybody was in a zombie state," he told SPACE.com.

Puig-Suari said that CubeSat teams worked long and hard in readying their respective satellites for launch on the Dnepr. "It was a positive step that we made it to the rocket...not a trivial thing. It was a kind of eye-opening experience and as real-world as it gets."

Added William Whalen, a Cal Poly aerospace engineer specializing in thermal vacuum testing of CubeSats: "It was devastating, obviously, immediately after the failure." Still, numbers of universities are working on follow-on CubeSats, he said.

"We're not stopping...we're looking for more launch opportunities. We're not going away. This work will continue to continue...and expand," Whalen said. "If you want to play with the big boys, this is our chance. It isn't just to go up there and show that we work, but it's also to show that we're resilient."

As for the future of CubeSats, Puig-Suari is taking the small is beautiful route.

"I think we're starting to get interesting. The technology is shrinking and we can do useful things," Puig-Suari said, thanks to micro-electronics, powerful processors, tiny cameras and other systems.

"There was a lot of skepticism on the part of industry," Puig-Suari said, "that CubeSats couldn't really do anything useful because of size."

That mindset is changing, Puig-Suari added, with CubeSat developers now working on attitude determination, control and pointing accuracy?features that can lead to an array of future applications.

"Things are picking up," Puig-Suari suggested. "We're starting to see industry CubeSats that are not from universities. NASA is building them; Boeing and The Aerospace Corporation too. That's very different from the past. That kind of shows that there's something here that wasn't here before."

The momentum behind CubeSats won't be shoved off course by an errant booster, said Bob Twiggs, CubeSat Project Co-Director in the Department of Aeronautics & Astronautics at Stanford University, California.

"We have always said that getting the student satellites to the launch completes 95 percent of the educational goals of the project," Twiggs advised. "There is disappointment for everyone, but they can also be proud of the achievements made in their program. There are many levels of success that we try to stress in the student satellite programs like building an infrastructure at the schools that allow them to do such projects. They learn many skills that we can't teach in the class room."

Despite the launch snag, Twiggs said, the CubeSat student efforts are developing the best trained students that will be the next generation of space engineers..."and we hope a much larger generation of the general public that has a renewed interest in space exploration."


Copyright © 1999-2006 SPACE.com, Inc.


story.cube.jpg

Researchers hold a tiny CubeSat satellite.

Advertisement

Advertisement

Career Builder.com
Quick Job Search
  More Options
International Edition
CNN TV CNN International Headline News Transcripts Advertise with Us About Us Contact Us
Search
© 2007 Cable News Network.
A Time Warner Company. All Rights Reserved.
Terms under which this service is provided to you.
Read our privacy guidelines. Contact us. Site Map.
SERVICES » E-mails RSSRSS Feed PodcastsRadio News Icon CNNtoGo CNN Pipeline
Offsite Icon External sites open in new window; not endorsed by CNN.com
Pipeline Icon Pay service with live and archived video. Learn more